Neurons Detect Increases and Decreases in Oxygen Levels Using Distinct Guanylate Cyclases
نویسندگان
چکیده
Homeostatic sensory systems detect small deviations in temperature, water balance, pH, and energy needs to regulate adaptive behavior and physiology. In C. elegans, a homeostatic preference for intermediate oxygen (O2) levels requires cGMP signaling through soluble guanylate cyclases (sGCs), proteins that bind gases through an associated heme group. Here we use behavioral analysis, functional imaging, and genetics to show that reciprocal changes in O2 levels are encoded by sensory neurons that express alternative sets of sGCs. URX sensory neurons are activated by increases in O2 levels, and require the sGCs gcy-35 and gcy-36. BAG sensory neurons are activated by decreases in O2 levels, and require the sGCs gcy-31 and gcy-33. The sGCs are instructive O2 sensors, as forced expression of URX sGC genes causes BAG neurons to detect O2 increases. Both sGC expression and cell-intrinsic dynamics contribute to the differential roles of URX and BAG in O2-dependent behaviors.
منابع مشابه
Counterbalance between BAG and URX neurons via guanylate cyclases controls lifespan homeostasis in C. elegans.
Lifespan of C. elegans is affected by the nervous system; however, the underlying neural integration still remains unclear. In this work, we targeted an antagonistic neural system consisting of low-oxygen sensing BAG neurons and high-oxygen sensing URX neurons. While ablation of BAG neurons increases lifespan of C. elegans, ablation of URX neurons decreases lifespan. Genetic analysis revealed t...
متن کاملA novel role for the zinc-finger transcription factor EGL-46 in the differentiation of gas-sensing neurons in Caenorhabditis elegans.
Oxygen (O2) and carbon dioxide (CO2) provoke distinct olfactory behaviors via specialized sensory neurons across metazoa. In the nematode C. elegans, the BAG sensory neurons are specialized to sense changes in both O2 and CO2 levels in the environment. The precise functionality of these neurons is specified by the coexpression of a membrane-bound receptor-type guanylyl cyclase GCY-9 that is req...
متن کاملTemperature, Oxygen, and Salt-Sensing Neurons in C. elegans Are Carbon Dioxide Sensors that Control Avoidance Behavior
Homeostatic control of body fluid CO(2) is essential in animals but is poorly understood. C. elegans relies on diffusion for gas exchange and avoids environments with elevated CO(2). We show that C. elegans temperature, O(2), and salt-sensing neurons are also CO(2) sensors mediating CO(2) avoidance. AFD thermosensors respond to increasing CO(2) by a fall and then rise in Ca(2+) and show a Ca(2+...
متن کاملDistinct inhibitory ATP-regulated modulatory domain (ARMi) in membrane guanylate cyclases.
Depending upon the cofactors Mg2+ or Mn2+, ATP stimulates or inhibits the signal transduction activities of the natriuretic factor receptor guanylate cyclases, ANF-RGC and CNP-RGC: there is stimulation in the presence of Mg2+ and inhibition in the presence of Mn2+. A defined core ATP-regulated modulatory (ARM) sequence motif within the intracellular 'kinase-like' domain of the cyclases is criti...
متن کاملSearching for neuronal left/right asymmetry: genomewide analysis of nematode receptor-type guanylyl cyclases.
Functional left/right asymmetry ("laterality") is a fundamental feature of many nervous systems, but only very few molecular correlates to functional laterality are known. At least two classes of chemosensory neurons in the nematode Caenorhabditis elegans are functionally lateralized. The gustatory neurons ASE left (ASEL) and ASE right (ASER) are two bilaterally symmetric neurons that sense dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 61 شماره
صفحات -
تاریخ انتشار 2009